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Hydrodynamical calculations have been successful in describing global observables in ultrarela-
tivistic heavy ion collisions, which aim to observe the production of the quark-gluon plasma. On the
other hand, recently, a lot of evidence that there exists a critical end point (CEP) in the QCD phase
diagram has been accumulating. Nevertheless, so far, no equation of state with the CEP has been
employed in hydrodynamical calculations. In this paper, we construct the equation of state with
the CEP on the basis of the universality hypothesis and show that the CEP acts as an attractor of
isentropic trajectories. We also consider the time evolution in the case with the CEP and discuss
how the CEP affects the final state observables, such as the correlation length, fluctuation, chemical
freezeout, kinetic freezeout, and so on. Finally, we argue that the anomalously low kinetic freezeout
temperature at the BNL Relativistic Heavy Ion Collider suggests the possibility of the existence of
the CEP.

I. INTRODUCTION

The structure of the QCD phase diagram is one of
the most interesting and important topics in nuclear and
particle physics, and a lot of intensive studies have been
carried out from both theoretical side and experimen-
tal side [1]. Recent theoretical studies have revealed the
rich structure in the QCD phase diagram at finite den-
sity, which consists of not only the quark-gluon plasma
(QGP) phase and hadron phase but also the two flavor
color superconductor phase and color-flavor locked phase
[2]. Furthermore, in the finite temperature direction, re-
cent lattice calculations suggest the existence of mesonic
bound states even above the deconfinement phase tran-
sition temperature [3, 4, 5, 6, 7, 8].

In this paper, we focus on the critical end point (CEP)
in the QCD phase diagram, which is the terminating
point of the first order phase transition 1. In partic-
ular, we will consider its effects on the observables in
ultrarelativistic heavy ion collisions in detail. Several ef-
fective theory analyses have predicted the existence of
the CEP in the QCD phase diagram [10, 11, 12]. Since
Fodor and Katz presented a QCD phase diagram with
the CEP for the first time with lattice calculation [13], a
lot of remarkable progress in finite temperature and den-
sity lattice calculation has been made [14, 15]. However,
unfortunately, it will need more time before we reach the
conclusive result on the existence of the CEP, its precise
position, and so on, because finite density lattice QCD
still has difficulties in performing accurate calculation on
large lattices and at large chemical potential. Here, the

1 The terminology ‘critical end point’ is sometimes used for a dif-
ferent meaning [9]. However, it is rather customary in hadron
physics to use it for the meaning we employ here. Thus, we use
‘critical end point’ instead of ’critical point’ in this paper. We
thank M. Stephanov for informing us of Ref. [9].

important point is that the existence of the CEP was
shown semi-quantitatively by non-perturbative QCD cal-
culation. The precise determination of the location of the
CEP in the QCD phase diagram is a difficult problem.
The locations of the CEP in different studies are, in fact,
scattered over the T (temperature)-µB (baryon chemical
potential) plane [12]. Therefore, analyses from the exper-
imental side are also indispensable in order to understand
the properties of the QCD critical end point.

A promising way to investigate the existence and lo-
cation of the QCD critical end point is to carry out ex-
periments at various collision energies and compare their
results. However, we have to find the observables which
are suitable for detecting the CEP [16, 17, 18, 19, 20]
for that purpose. In this paper, we study the CEP from
the point of view of phenomenological analyses which can
be compared with experimental results easily and discuss
the indication of the existence of the CEP in experimen-
tal observables.

We divide the discussion into three steps. First, we
construct equations of state that include the CEP. This
step is necessary in order to consider the hydrodynami-
cal evolution of the system. The guiding principle here is
the theory of critical phenomena, in particular, the uni-
versality hypothesis. Second, we consider the deviation
from the thermal equilibrium near the CEP. This is im-
portant because i) the typical time scale is elongated near
the CEP, and ii) the system produced in ultrarelativistic
heavy ion collisions cannot stay near the CEP due to the
strong expansion. Finally, we discuss the possibility to
observe the consequences of the CEP experimentally by
using the preceding results.

The structure of this paper is as follows. In Section
II we argue the general feature of the equation of state
with the CEP on the basis of the universality hypothesis,
the focusing effect in isentropic trajectories in the T -µB

plane, and hydrodynamical expansion near the CEP. In
Section III we investigate the growth and decrease of the
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correlation length near the CEP from the point of view of
slowing-out-of-equilibrium. In Section IV we discuss the
consequences of the CEP in ultrarelativistic heavy ion
collision experiments. Section V is devoted to summary.

II. EQUATION OF STATE WITH THE

CRITICAL END POINT

In this section, we construct realistic equations of state
including the CEP. The equation of state with the CEP
consists of two parts, the singular part and non-singular
part. We assume that the CEP in QCD belongs to the
same universality class as that in the three dimensional
Ising model on the basis of the universality hypothesis.
After mapping the variables and the equation of state
near the CEP in the three dimensional Ising model onto
those in QCD, we match the singular entropy density
near the CEP with the non-singular QGP and hadron
phase entropy densities which are known away from the
CEP. From this procedure we determine the behavior of
the entropy density which includes both the singular part
and non-singular part in a large region in the T -µB plane.
Finally, from the entropy density, we extract the behavior
of other thermodynamical quantities such as the baryon
number density, pressure, and energy density, and show
that in the T -µB plane the CEP acts as an attractor
of isentropic trajectories, nB/s = const., with nB and
s being the baryon number density and entropy density,
respectively.

A. Singular Part of Equation of State

In the three dimensional Ising model, the magnetiza-
tion M (the order parameter) is a function of the reduced
temperature r = (T − Tc)/Tc and the external magnetic
field h with Tc being the critical temperature. The CEP
is located at the origin (r, h) = (0, 0). At r < 0 the
order of the phase transition is first and at r > 0 it is
crossover. A useful form of the equation of state of the
three-dimensional Ising model is given through the para-
metric representation by the two variables R and θ,














M = M0R
βθ,

h = h0R
βδh̃(θ)

= h0R
βδ(θ − 0.76201θ3 + 0.00804θ5),

r = R(1 − θ2) (R ≥ 0,−1.154 ≤ θ ≤ 1.154),

(1)

where M0 and h0 are normalization constants and crit-
ical exponents β and δ are 0.326 and 4.80, respectively
[21]. We set the normalization constants M0 and h0 by
imposing M(r=−1, h=+0) = 1 and M(r=0, h=1) = 1,
which assures that the critical magnetization behaves as
M(r = 0, h) ∝ sgn(h)|h|1/δ and M(r, h = +0) ∝ |r|β

(r < 0) around the origin.
In order to determine the singular part of the en-

tropy density, we start from the Gibbs free energy density

G(h, r),

G(h, r) = F (M, r) −Mh, (2)

where F (M, r) is the free energy density. Setting the free
energy density,

F (M, r) = h0M0r
2−αg(θ), (3)

together with the relation h = (∂F/∂M)r, we obtain the
differential equation for g(θ),

h̃(θ)(1−θ2+2βθ2) = 2(2−α)θg(θ)+(1−θ2)g′(θ), (4)

where a critical exponent α is 0.11 [21]. Substituting h̃(θ)
into Eq. (4), we obtain

g(θ) = g(1)+c1(1−θ
2)+c2(1−θ

2)2 +c3(1−θ
2)3, (5)

where g(1) is determined by Eqs. (1) and (4),

g(1) =
β

2 − α
h̃(1), (6)

and the coefficients c1, c2, and c3 are given by

c1 = −
1

2

1

α− 1
{(1 − 2β)(1 + a+ b) − 2β(a+ 2b)} ,

c2 = −
1

2α
{2βb− (1 − 2β)(a+ 2b)} ,

c3 = −
1

2(α+ 1)
b(1 − 2β), (7)

where a = −0.76201 and b = 0.00804 are the coefficients
of the θ3 and θ5 terms in h̃(θ), respectively [21]. Actually,
there is freedom to add the function C(1 − θ2)2−α to
g(θ), with C being a constant. However, we will not take
into account this part with a free parameter, because,
whereas the universality tells us about only the critical
behavior near the phase transition, this part does not
show a singular behavior.

Differentiating the Gibbs free energy by the tempera-
ture, we obtain the singular part of the entropy density
sc near the QCD critical end point,

sc = −

(

∂G

∂T

)

µB

= −

(

∂G

∂h

)

r

∂h

∂T
−

(

∂G

∂r

)

h

∂r

∂T
, (8)

where
(

∂G
∂h

)

r
and

(

∂G
∂r

)

h
are, respectively, given by

(

∂G

∂h

)

r

=

(

∂F (M, r)

∂h

)

r

−

(

∂M

∂h

)

r

h−M

= −M, (9)
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(

∂G

∂r

)

h

=

(

∂F (M, r)

∂r

)

h

−

(

∂M

∂r

)

h

h

=
h0M0R

1−α

2βδθh̃(θ) + (1 − θ2)h̃′(θ)
×

{

(2 − α)h̃′(θ)g(θ) − βθh̃′(θ)h̃(θ) − βδh̃(θ)g′(θ) + βδh̃2(θ)
}

. (10)

µB

∆T
µB∆

h
r

T

CEP

critical regioncrit

crit

FIG. 1: Sketch of the r-h axes (three dimensional Ising
model) mapped onto the T -µB plane (QCD). The r axis is
tangential to the QCD phase boundary at the CEP. We set
the h direction perpendicular to the r direction.

Note that T in Eq. (8) is the temperature on the QCD
side. In Eqs. (9) and (10), we use the differential equation
Eq. (4) and the following relations,

(

∂R

∂h

)

r

=
1

h0Rβδ−1

2θ

2βδθh̃(θ) + (1 − θ2)h̃′(θ)
,

(

∂θ

∂h

)

r

=
1

h0Rβδ

1 − θ2

2βδθh̃(θ) + (1 − θ2)h̃′(θ)
,

(

∂R

∂r

)

h

=
h̃′(θ)

2βδθh̃(θ) + (1 − θ2)h̃′(θ)
,

(

∂θ

∂r

)

h

= −
βδ

R

h̃(θ)

2βδθh̃(θ) + (1 − θ2)h̃′(θ)
. (11)

Now we map the r-h plane in the three dimensional
Ising model onto the T -µB plane in QCD in order to
determine ∂h/∂T and ∂r/∂T in Eq. (8). The CEP in
the three dimensional Ising Model, which is the origin in
the r-h plane, is mapped to the CEP in QCD, (T, µB) =
(TE , µBE). The r axis is tangential to the first order
phase transition line at the CEP [22]. However, there
is no general rule about how the h axis is mapped in
the T -µB plane. Here, for simplicity, we set the h axis
perpendicular to the r axis. In Fig. 1, at r < 0 the order
of the phase transition is first and at r > 0 it is crossover.

[MeV]µB

[MeV]T

cS

−0.5 −1
0

10.5

CEP

 100  300  500  700

−1

 1

 200

 100

 0

FIG. 2: Dimensionless variable Sc(T, µB) as a func-
tion of T and µB . The CEP is located at (T, µB) =
(154.7 MeV, 367.8 MeV) (the triangle in the contour plot).

B. Thermodynamical Quantities

For quantitative construction of equations of state with
the CEP, we fix the relation between the scales in (r, h)
and (T, µB) variables, which provides the size of the crit-
ical region around the CEP in the T -µB plane, as follows:
∆r = 1 (r-h plane) ↔ ∆µBcrit (T -µB plane) and ∆h = 1
(r-h plane) ↔ ∆Tcrit (T -µB plane) (Fig. 1) 2. In order to
connect the equations of state in the singular region and
the non-singular region smoothly, we define the dimen-
sionless variable Sc(T, µB) for the singular part of the
entropy density sc, which has the dimension [energy]−1,

Sc(T, µB) = A(∆Tcrit,∆µBcrit)sc(T, µB), (12)

where A(∆Tcrit,∆µBcrit) =
√

∆T 2
crit + ∆µ2

Bcrit ×D and
D is a dimensionless constant. The extension of the crit-
ical domain around the CEP is specified by the param-
eters ∆Tcrit, ∆µBcrit, and D. In Fig. 2, Sc is shown
as a function of T and µB. The CEP is located at
(T, µB) =(157.4 MeV, 367.8 MeV) (the triangle in the
contour plot). It is clearly seen that the order of the
phase transition changes from crossover to first order at
the CEP. The contour lines, Sc = ±0.5, give a rough idea

2 ∆µBcrit and ∆Tcrit give, respectively, approximate extensions of
the critical region in the µB and T directions when the location
of the CEP is close to the T axis and, as a result, the r axis is ap-
proximately parallel to the µB axis, as recent lattice calculations
suggest [13, 14, 15].
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about the size of the phase transition region. At lower
µB below the critical chemical potential, the phase tran-
sition is smeared and the effect of the phase transition is

observed in a larger domain in the temperature direction.
Using the dimensionless variable Sc(T, µB), we define the
entropy density in the T -µB plane,

s(T, µB) =
1

2
(1 − tanh[Sc(T, µB)]) sH(T, µB) +

1

2
(1 + tanh[Sc(T, µB)]) sQ(T, µB), (13)

where sH and sQ are the entropy densities in the hadron
phase and QGP phase away from the CEP, respectively.
This entropy density includes both singular and non-
singular contributions, and more importantly, gives the
correct critical exponents near the QCD critical end
point. sH is calculated from the equation of state of the
hadron phase in the excluded volume approximation [23],

P (T, {µBi}) =
∑

i

P ideal
i (T, µBi − V0P (T, {µBi}))

=
∑

i

P ideal(T, µ̃Bi), (14)

where P is the pressure, P ideal
i is the pressure of the ideal

gas of particle i, µBi is the baryon chemical potential of
particle i, and V0 is the hadron volume common to all
hadron species. Non-strange resonances with mass up to
2 GeV are included in the sum and the radius of hadrons
is fixed at 0.7 fm. We obtain sQ from the equation of
state of the QGP phase in the Bag model,

P (T, µB) =
(32 + 21Nf)π2

180
T 4 +

Nf

2

(µB

3

)2

T 2

+
Nf

4π2

(µB

3

)4

−B, (15)

where the number of the flavors Nf is 2 and the bag
constant B is (220 MeV)4 3.

Once we construct the entropy density, we can calcu-
late the other thermodynamical quantities such as the
baryon number density, pressure, and energy density.
The baryon number density nB is given by

nB(T, µB) =
∂P

∂µB

=

∫ T

0

∂s(T ′, µB)

∂µB
dT ′ + nB(0, µB).(16)

3 In Eq. (13) the relative strength of the singularity also depends on
the distance between the QCD critical end point, where Sc = 0,
and the sQ = sH line. If the CEP is located near the sQ =
sH line, less singularity is realized. However, in the following
calculations, we assume that the CEP is on the phase transition
line in the bag plus excluded volume model, where the phase
transition is always of strong first order as shown later. Thus,
sQ is substantially larger than sH at the CEP and the singularity
is not suppressed.

In the first order phase transition region, in order to
take into account the discontinuity in the entropy den-
sity and baryon number density on the phase boundary,
it is necessary to add the following term to Eq. (16) for
T > Tc(µB),

∣

∣

∣

∣

∂Tc(µB)

∂µB

∣

∣

∣

∣

(s(Tc(µB)+0, µB)−s(Tc(µB)−0, µB)), (17)

where Tc(µB) is the temperature of the first order phase
transition at µB . The pressure P is obtained by integrat-
ing the entropy density with regard to the temperature,

P (T, µB) =

∫ T

0

s(T ′, µB)dT ′ + P (0, µB). (18)

Finally, from the thermodynamical relation the energy
density E is obtained as

E = Ts− P − µBnB. (19)

Here we make a comment on the choice of the param-
eters ∆Tcrit, ∆µBcrit, and D. The linear mapping from
(r, h) to (T, µB), strictly speaking, holds only in the prox-
imity of the CEP, where the thermodynamical quantities
comply with the universality. We use the linear map-
ping throughout the critical region. In order to avoid
artifacts due to this simplification, ∆Tcrit, ∆µBcrit, and
D need to be appropriately chosen so that thermody-
namical constraints are not violated. In particular, the
following thermodynamical inequalities [22, 24, 25] need
to be observed,

(

∂S

∂T

)

V,NB

> 0,

(

∂P

∂V

)

T,NB

> 0,

(

∂µB

∂NB

)

T,V

> 0, (20)

where S is the entropy, NB is the baryon number, and V
is the volume of the system.

Figure 3 indicates the entropy density and the baryon
number density as a function of T and µB. We can see
that in the high chemical potential region the order of
the phase transition is first and that in the low chemical
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potential region a smooth phase transition occurs, which
reflects the existence of the CEP. In this calculation the
CEP is located at (T, µB) = (154.7 MeV, 367.8 MeV).
Since the universality does not provide the information
on the location of the CEP, it is treated as a parame-
ter throughout this paper as well as the values of ∆Tcrit,
∆µBcrit, and D. Note, however, that the local singular
behavior of thermodynamical quantities around the CEP
is fixed by the universality hypothesis and that accord-
ingly the local features such as the focusing, which we
discuss below, are not affected by this ambiguity.

µ

600400200
T [MeV]

160
80

10

B[MeV]

[fm    ]−3s

0

0

18
nB

T [MeV] µ [MeV]B

[fm    ]−3

0

0.2

0.4

0.6

160
80

0 200 400 600

FIG. 3: Entropy density (left) and the baryon number
density (right) as a function of T and µB . (TE, µBE) =
(154.7 MeV, 367.8 MeV). The values of (∆Tcrit, ∆µBcrit, D)
are the same as in Fig. 4 (left).

First we investigate the behavior of the isentropic tra-
jectories, i.e., contour lines of nB/s. When entropy pro-
duction can be ignored, the entropy and baryon number
are conserved in each volume element and, therefore, the
temperature and chemical potential in a given volume
element change along the contour lines specified by the
initial condition.

Figure 4 shows the isentropic trajectories in the T -µB

plane. The values of (∆Tcrit, ∆µBcrit, D) for the Fig. 4
(left) and Fig. 4 (right) are (100 MeV, 200 MeV, 0.15)
and (100 MeV, 200 MeV, 0.4), respectively. In both
cases, the trajectories are focused to the CEP. This ‘fo-
cusing’ effect is more clearly observed in the case of
(TE, µBE) = (143.7 MeV, 652 MeV) (Fig. 4 (right)).
Thus, the CEP acts as an attractor of isentropic trajec-
tories. Figure 5 shows isentropic trajectories in the bag
plus excluded volume model, which is currently employed
in most of hydrodynamical calculations [26]. The order
of the phase transition is always first in this case. There
is no focusing effect on the isentropic trajectories in this
case. Instead, the trajectories are just shifted to the left
on the phase transition line. This implies that the hy-
drodynamical evolution in the case with the CEP is very
different from the one in the case with the equation of
state given by the bag plus excluded volume model. Be-
cause of this attractor character of the CEP, it is not
needed to fine-tune the collision energy to make the sys-
tem pass near the CEP, which is pointed out in Ref. [16]
for the first time. In other words, it is expected that
the effect of the CEP, if any, changes only slowly as the
collision energy is changed.

Two comments are in order here. First, as we ex-
plained, the universality does not tell us about the sizes

of ∆Tcrit, ∆µBcrit, D, and so forth. IfD is larger, the size
of the critical region becomes smaller and the behavior of
the isentropic trajectories approaches that in Fig. 5. This
can be easily seen from Eqs. (12) and (13). Second, the
focusing on the right hand side of the CEP was first dis-
cussed in Ref. [16]. Our numerical result indicates that
the CEP attracts isentropic trajectories not only on the
right hand side (first order side) of the CEP but also on
the left hand side (crossover side) of the CEP. Thus, if
the critical region is large enough, the fine-tuning of the
collision energy is not necessary to hit the vicinity of the
CEP not only on the low energy side [16] but also on the
high energy side.

µB [MeV]

T
 

[M
eV

]

0.4 (144,481)

0 (200,461)0 (200,145)

0.29 (155,361)

0.4 (119,227)

0.34 (152,490)

 100  200  300  400  500  600

 120

 160

 80

 200

T
[M

eV
]

µB [MeV]
 700 300 100  500

 80

 120

 160

 200

FIG. 4: Isentropic trajectories in the cases with the CEP. The
CEP is located at (TE, µBE) = (154.7 MeV, 367.8 MeV)
(left) and (TE, µBE) = (143.7 MeV, 652.0 MeV) (right).
The values of nB/s on the trajectories are 0.01, 0.02, 0.03,
and 0.04 (left) and 0.01, 0.02, 0.03, 0.04, and 0.05 (right)
from left to right. L/Ltotal(T, µB) is shown for some points
on two trajectories in the left figure.

Next we argue the change of the square of the sound
velocity c2s,

c2s =

(

∂P

∂E

)

nB/s

, (21)

along the isentropic trajectories, which gives us the in-
formation on how the equation of state changes in the
course of the hydrodynamical evolution. Figure 6 indi-
cates the sound velocity as a function of L/Ltotal, where
L is the path length from a reference point on the tra-
jectory with a given nB/s and Ltotal is the one to an-

[MeV]µB

[M
eV

]
T

 80

 120

 160

 200

 100  200  300  600 400  500

FIG. 5: Isentropic trajectories (solid lines) in the bag plus
excluded volume model. The values of nB/s on the trajecto-
ries are 0.01, 0.02, 0.03, 0.04, and 0.05 from left to right. The
dashed line stands for the phase boundary. The order of the
phase transition is always first in this case.
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other reference point along the trajectory. For example,
in Fig. 6 (left), L/Ltotal = 0 corresponds to the point,
(T, µB) = (200 MeV, 145 MeV) (also see Fig. 4 (left))
and at about L/Ltotal = 0.25 ∼ 0.35 the hadronization
process occurs and at about L/Ltotal = 0.35 ∼ 0.5 kinetic
freezeout takes place. We can see clear difference between
the behavior of the sound velocities on nB/s = 0.01 and
0.03 trajectories. In the case of nB/s = 0.01, the sound
velocity changes smoothly along the trajectory, which re-
flects the occurrence of a smooth phase transition at this
nB/s value, and it takes its minimum at L/Ltotal = 0.29.
On the other hand, the sound velocity at nB/s = 0.03
changes suddenly at L/Ltotal = 0.34, due to the first
order phase transition. The hydrodynamical expansion
along various nB/s paths differs in how the effect of the
phase transition appears because of the existence of the
CEP. In a real collision system, nB/s changes from posi-
tion to position. As a result, the time evolution of such
a system is described as a superposition of trajectories
with different nB/s’s. Thus, the system may not expand
uniformly and this effect may appear in physical observ-
ables related to expansion such as the collective flow and
Hanbury Brown-Twiss (HBT) radii if the collision pa-
rameters are appropriate, i.e., isentropic trajectories in
the system pass through and/or near the CEP.

C
2 S

BµT,(        )=(155,361)

T, µB(        )

nB

 

(200, 145) (161, 290) (119, 277)
 

= 0.01s

L L total

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5

C
2 S

Bn

µB T,(        )
L L

(200, 461) (144, 481) (99, 486)(165, 457)

 T µB(   ,     )=(152, 490)
s = 0.03

total

0

0.1

0.2

0.3

0 0.2 0.4 0.6

FIG. 6: Square of the sound velocity c2
s as a function of

L/Ltotal along nB/s = 0.01 (left) and nB/s = 0.03 (right)
isentropic trajectories. The CEP is located at (TE, µBE) =
(154.7 MeV, 367.8 MeV) in both cases. The parameters are
the same as in Figs. 2, 3, and 4 (left).

III. SLOWING OUT OF EQUILIBRIUM

The equilibrium correlation length and fluctuation be-
come large near the CEP and they diverge at the CEP. At
the same time, the typical time scale becomes long near
the CEP, which makes the system take long time to reach
the thermal equilibrium near the CEP. Therefore, in the
time evolution in ultrarelativistic heavy ion collisions,
near the CEP slowing-out-of-equilibrium occurs and non-
equilibrium dynamics has to be taken into account. We
assume that the thermal equilibrium is established soon
after collisions and that the quark-gluon plasma follows
Bjorken’s scaling solution [27] for hydrodynamical evolu-
tion. The initial temperature and proper time are set to
200 MeV and 1 fm/c, respectively. Before discussing the

correlation length in out-of-equilibrium time evolution,
we calculate the equilibrium correlation length near the
CEP in the r-h plane. Using Widom’s scaling law [28],
the equilibrium correlation length ξeq is given by

ξ2eq(r,M) = a2M−2ν/βg

(

|r|

|M |1/β

)

, (22)

where ν = 0.63 is a critical exponent of the three dimen-
sional Ising model [21]. a is a constant with the dimen-
sion of length and fixed to 1 fm. There is not so large
ambiguity in the determination of a, since ξeq is of the
order of 1 fm at T ∼ 200 MeV. The function g(x) is given
by the ǫ expansion to order ǫ2 [28],

g(x) = gǫ(x)

= 6−2νz
{

1 −
ǫ

36
[(5 + 6 ln 3)z − 6(1 + z) ln z]

+ǫ2
[

1 + 2z2

72
ln2 z +

(

z

18

(

z −
1

2

)

(1 − ln 3)

−
1

216

(

16z2 −
47

3
z −

56

3

))

ln z

+
1

216

(

101

6
+

2

3
I + 6 ln2 3 + 4 ln 3 − 10

)

z2

−
1

216

(

6 ln2 3 +
44

3
ln 3 +

137

9
+

8

3
I

)

z

]}

,

(23)

where z ≡ 2
1+x/3 , I ≡

∫ 1

0
ln[x(1−x)]
1−x(1−x) dx ∼ −2.344, and

ǫ = 4− d with d being the dimension of the space, 3. At
large x, i.e., around the crossover and CEP, gǫ(x) cannot
be used and the asymptotic form given in Ref. [29],

g(x) = glarge(x) =

(

1

3 + x

)2ν

, (24)

should be used. We smoothly connect gǫ(x) and glarge(x)
around x = 5, i.e., in most part of the critical region g(x)
is given by Eq. (23).

Figure 7 shows the correlation length in equilibrium
and the isentropic trajectories at some nB/s’s in the r-h
plane. In Fig. 7 the CEP is located at the origin, and
the first order phase transition occurs at r < 0 and the
crossover phase transition takes place at r > 0. The
correlation length in equilibrium ξeq is divergent at the
origin and the region where ξeq is large spreads out in
the smooth phase transition region, r > 0. In Fig. 7 solid
(dash-dotted) lines stand for the isentropic trajectories
in the case of (TE , µBE) = (154.7 MeV, 367.8 MeV)
((TE , µBE) = (143.7 MeV, 652.0 MeV)). Note that this
r-h plane is actually placed in the T -µB plane with the
tilt given by the slope of the tangential line of the first
order phase transition line at the CEP as shown in Fig.
1. The value of nB/s is determined not only by r and
h but also by the non-critical component of the equa-
tion of state. This is the reason why the behavior of
the trajectories relative to the CEP changes according to
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FIG. 7: Correlation length in equilibrium and the nB/s
contour lines in the r-h plane. The solid lines are trajec-
tories with fixed nB/s values 0.008 and 0.01 in the case of
(TE, µBE) = (154.7 MeV, 367.8 MeV) and the dash-dotted
lines are those with nB/s = 0.02 and 0.035 in the case of
(TE, µBE) = (143.7 MeV, 652.0 MeV).

the location of the CEP in the T -µB plane. Thus, the
strength of focusing effect of the CEP is determined also
by the non-singular part. On the other hand, we use the
universality hypothesis to calculate ξeq and, as a result,
it is a function of only r and h. The trajectories are
attracted to the CEP, which makes the length of each
trajectory in the critical region, where ξeq is large, long.
This behavior is very different from the assumption in
usual schematic analyses, for example, Fig. 1 in Ref. [29]
by Berdnikov and Rajagopal. The maximum value of ξeq
depends on the value of nB/s.

Next we calculate the non-equilibrium correlation
length ξ(τ) as a function of the proper time τ by using
the rate equation given in Ref. [29],

d

dτ
mσ(τ) = −Γ[mσ(τ)]

(

mσ(τ) −
1

ξeq(τ)

)

, (25)

where 1/mσ(τ) = ξ(τ) and Γ[mσ(τ)] is the parameter
which represents the rate of slowing-out-of-equilibrium.
From the theory of dynamical critical phenomena,
Γ[mσ(τ)] is given as

Γ[mσ(τ)] =
A

ξ0
(mσ(τ)ξ0)

z , (26)

where we take ξ0 = ξeq(T = 200 MeV), and z is a univer-
sal exponent of Model H in [30], i.e., z ∼ 3 [29, 31]. A is a
dimensionless non-universal parameter and we use A = 1
as in Ref. [29], though there is considerable uncertainty
in the parameter A. However, fortunately, the relation
between ξeq and ξ does not depend on the parameter
choice of A so much at the kinetic freezeout point. The
non-equilibrium correlation length approaches the equi-
librium correlation length as A increases. At A = 100, ξ
is almost equal to ξeq. On the other hand, at small A the
effect of slowing-out-of-equilibrium appears strongly. At
the same time, however, the maximum value of ξ becomes
small as A decreases. As a result, the absolute value of
the difference between ξeq and ξ at the kinetic freezeout

ξ e
q

ξ
or

[fm
] ξeq

ξeq

0.10 0.2 0.3 0.4

1

0

200 160 120153 ~~~~170 T

(0.008)

(0.008)
(0.01)

(0.01)
3

2

[MeV]

ξ
ξ

L / L total

12

L/L
0.2 0.4

8

4

0

τ [fm/c]

total

FIG. 8: Equilibrium correlation length ξeq (thin lines) and
non-equilibrium correlation length ξ (thick lines) on the isen-
tropic trajectories with nB/s = 0.008 and 0.01, together with
τ as functions of L/Ltotal (inlet). z = 3 was used in the
calculation.

temperature remains almost unchanged for a wide range
of A. Indeed, we have checked that the following discus-
sion about non-equilibrium correlation length holds for
0.1 . A . 10.

Figure 8 shows the correlation length as a function
of L/Ltotal. The dashed and solid lines stand for the
correlation lengths in equilibrium at nB/s = 0.008 and
nB/s = 0.01, respectively. The parameters are the same
as for Fig. 4 (left). The thin and thick lines are ξeq and ξ,
respectively. The maximum value of ξeq along the former
trajectory is larger than that along the latter, because the
former approaches the CEP more closely than the latter.
The non-equilibrium correlation length ξ is smaller than
ξeq at the beginning. Then, ξ becomes larger than ξeq
later. These are both due to the critical slowing down
around the CEP, as pointed out in Ref. [29]. However,
the difference becomes small by the time the system gets
to the kinetic freezeout point. If the transverse expansion
is taken into account, the time scale in the hadron phase
becomes much shorter, but ξeq is already small in the
hadron phase and the difference is expected to remain
small. Figure 9 shows the cube of the correlation length
as a function of the temperature for nB/s = 0.008, 0.01,
and 0.015. The parameters are the same as for Fig. 8.
The fluctuation scales approximately as ∝ ξ3. Thus, even
if the enhancement of ξ is small, there is a possibility
that the fluctuation shows some enhancement when the
system passes the vicinity of the CEP.

IV. CONSEQUENCES OF THE CRITICAL END

POINT IN EXPERIMENTS

Many experimental analyses have been carried out in
search of the evidence of the CEP in the QCD phase
diagram. Since the correlation length and fluctuation di-
verge at the CEP in thermal equilibrium, it has been
expected that some enhancement of the fluctuation, for
instance, is observed if the collision energy of nuclei is
properly adjusted so that the system goes right through
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FIG. 9: Cube of the equilibrium correlation length (thin
lines) as a function of the temperature and the cube of the
non-equilibrium correlation length (thick lines) on the isen-
tropic trajectories with nB/s = 0.008, 0.01, and 0.015. The
parameters are the same as for Fig. 8. The isentropic lines
with nB/s = 0.008, 0.01, and 0.015 pass left of, almost
through, and right of the CEP, respectively.

the CEP. Generally, the higher the collision energy is,
the smaller chemical potential region is explored in the
T -µB plane. Thus, it has also been expected that the
observables related to the critical behavior around the
CEP such as fluctuations show non-monotonic behavior
as a function of the collision energy. We discuss the ob-
servability of such behavior in ultrarelativistic heavy ion
collisions on the basis of our findings in the previous sec-
tions.

It has been naively expected that the collision energy
needs to be carefully adjusted so that the system goes
right through the CEP and its existence can be con-
firmed. In section II, we have shown that the CEP acts
as an attractor of the isentropic trajectories. Thus, if the
size of the critical domain is large enough, as stressed in
Ref. [16] for the right hand side of the CEP, it is not neces-
sary to fine-tune the collision energy to make the system
approach the CEP closely enough. However, such phys-
ical quantities that show the critical behavior near the
CEP are hadronic observables, and are subject to final
state interactions in the hadron phase. It has been often
argued that if the system passes near the CEP, kinetic
freezeout takes place near the CEP [16]. It is based on
the expectation that, in such a case, the system stays long
near the CEP, where the phase transition is second order,
and that when the system starts to leave away from the
CEP, the entropy density or particle density is already
small enough so that kinetic freezeout takes place. To
the contrary, Fig. 3 does not show a sharp drop of the
entropy density near the CEP. To see this more clearly,
we show the contour plot of the entropy density in Fig. 10
for the same parameters as in Fig. 3. The entropy density
gives a semi-quantitative measure of the whereabouts of
kinetic freezeout. Alternatively, we could use the energy
density as a measure as well. Figure 10 shows that the
contour lines of the entropy density are not focused near

B [MeV]µ

T
[M

eV
]

10 fm−3

5 fm−3

 80

 120

 160

 100  200  300  400  500  600

 200

FIG. 10: Isentropic trajectories and entropy density contour
lines in the case with the CEP. The parameters are the same
as for Fig. 3 and the left figure of Fig. 4. The solid lines are
isentropic trajectories (nB/s = 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, and 0.04 from left to right) as in Fig. 4. The dashed
lines are entropy density contour lines, which are shown at
every 1 fm−3.

the CEP in contrast to the isentropic trajectories. Thus,
it is not likely that kinetic freezeout takes place near the
CEP. The reason can be traced back to the fact that at
the CEP the entropy density is continuous and bound,
although its derivative along the h axis diverges. If the
system does not freeze out near the CEP, the dilution
of the critical behaviors in the hadron phase needs to be
carefully considered.

Empirically it has been known that chemical freezeout
takes place just below the theoretically expected phase
transition line. Since the isentropic trajectories are fo-
cused around the CEP, it would be tempting to expect
that the chemical freezeout points are focused as the col-
lision energy is varied. However, so far, only the free
resonance gas model has been used in the analysis of
the chemical freezeout point. If the critical region is so
large that the focusing is realized in a large region, the
effect of the interactions on hadrons can by no means
be ignored. Then, the hadrons at chemical freezeout are
at most quasi-particles which are quantum-mechanically
different from the hadrons in the vacuum [32] and it is
necessary to consider the time evolution of the quasi-
particle states to relate the chemical freezeout points and
the observed particle number ratios. This is beyond the
scope of this paper and we would like to leave this as a
future problem.

In the previous section, we have shown that the differ-
ence between the thermal correlation length ξeq and the
actual correlation length ξ is small at kinetic freezeout
as well as ξ itself. As explained in Ref. [29], precisely
speaking, Eq. (26) is valid only near the CEP. Neverthe-
less, the physical reason why ξeq and ξ are so close to
each other at kinetic freezeout, is general and holds also
in this case; final state interactions tend to wash out non-
equilibrium effects. Since the kinetic freezeout points at
the Super Proton Synchrotron (SPS) at CERN and the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory are far below the phase transition



9

line, the effect of final state interactions is expected to
dominate.

Similar arguments hold also for fluctuations except for
the cube effect we argued in the previous section. The
event-by-event fluctuations of the mean transverse mo-
mentum in Pb + Au collisions at 40, 80, and 158 AGeV/c
were measured by the CERES Collaboration [33]. They
are slightly smaller than those at RHIC, and unusually
large fluctuation or non-monotonic behavior which may
suggest the existence of the CEP has not been observed.
However, in order to understand experimental observa-
tions, we have to take account of the CEP character as
an attractor of isentropic trajectories in the T -µB plane.
Due to the focusing effect of the CEP, the isentropic tra-
jectories of various initial collision energies are gathered
to the CEP, if the critical region around the CEP is large
enough. As a result, when each isentropic trajectory
passes near the CEP, similar correlation lengths, fluctua-
tions, and so on are induced, and they do not show strong
non-monotonic behavior as a function of the collision en-
ergy. In other words, the absence of the non-monotonic
behavior, which is shown by the CERES Collaboration,
does not necessarily imply the non-existence of the CEP
in the region probed by SPS and RHIC. More precise
measurement and analyses which take account of the fo-
cusing and slowing-out-of-equilibrium may reveal the ex-
istence of the CEP.

Recently, the fluctuation of (K+ + K−)/(π+ + π−)
and (p + p̄)/(π+ + π−) was measured and it was found
that the collision energy dependence of the fluctuation
of (K+ +K−)/(π+ + π−) is not described by a cascade
model [34]. While this result is interesting, we have to
be careful in associating this result with the critical phe-
nomena around the CEP. Since neither the numerator
nor denominator of (K+ +K−)/(π+ +π−) is a conserved
quantity in the strong interaction, substantial modifica-
tion is expected for both in the hadron phase as we have
demonstrated for the correlation length. Furthermore, as
we discussed for the particle ratios, quasi-particle states
near the CEP are quantum-mechanically different from
the ones in the vacuum, i.e., observed pions, kaons, pro-
tons, and so on. To relate the fluctuation of the particle
ratios to the critical phenomena, it is necessary to know
not only the time evolution of the quasi-particle states
but also the relation between the quasi-particle quantum
states in medium and the particle states in the vacuum
[32].

Up to now, we have been considering the isentropic
trajectories in the T -µB plane. Actually, the viscosity
is known to diverge at the CEP and the entropy is gen-
erated if the system passes near the CEP. However, the
singularity in the viscosity is known to be very weak [31],

η

η0
=

(

ξeq
ξeq,0

)( 1

19
ǫ+O(ǫ2))

, (27)

where η is the shear viscosity, η0 is the shear viscosity
at the point where the equilibrium correlation length is

1.0
1.05

η
/

0
η

h
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 1

 0 −0.2 −0.2
 0

FIG. 11: Shear viscosity η/η0 near the CEP. For the param-
eters used in the calculation, see the text.

ξeq,0, and ǫ is 4 − d as before. In Fig. 11, η/η0 in the
r-h plane is shown. The small correction to the criti-
cal exponent 1/19 is set to 0 for simplicity. Because of
the small critical exponent, the diverging feature of the
viscosity is hardly seen. The effect of the entropy pro-
duction around the CEP is thus expected to be small,
and it will not show easily-recognizable non-monotonic
changes in observables as the collision energy is changed.

Now let us turn back to the entropy density. The en-
tropy density in Fig. 3 shows the following feature. On
the left hand side of the CEP, the entropy density changes
smoothly, reflecting the fact that the phase transition
here is crossover. The closer to the T axis, the less rapid
the change is. On the other hand, on the right hand side
of the CEP, the phase transition is of first order, and the
jump in the entropy density increases as the chemical
potential increases. As a result, i) the separation of the
contour lines of the entropy density and energy density
gets larger as the distance from the CEP becomes larger
on the left hand side of the CEP, ii) the contour lines
below the crossover are flatter than those in the hadron
phase in the case with a first order phase transition (See
Figs. 3 and 10). This feature is not due to the universal-
ity. Instead, it is a general consequence of the existence
of the CEP. In fact, as shown in Fig. 12, this feature is
not observed in the case of the bag plus excluded vol-
ume model. Using this feature of the entropy density, we
discuss the behavior of kinetic freezeout as a function of
the collision energy. Kinetic freezeout takes place when
the mean (elastic) collision rate and the expansion rate
of the system become comparable. The expansion rate
in central collisions at RHIC is known to be considerably
larger than that at SPS [35]. The elastic collision rate
can be estimated from the elastic cross sections for pi-
ons and baryons and their densities. Due to the chiral
symmetry and the effect of the ∆, the elastic π-N cross
section is considerably larger than that of π-π. On the
other hand, in Pb+Pb collisions at 158 AGeV at SPS,
(p + p̄)/(π+ + π−) ∼ 0.09 [34, 36] and it is ∼ 0.09 at
RHIC [37]. Thus, at the same particle number density,
the collision rate at SPS is almost the same as that at
RHIC. From these considerations, it would be natural if
the kinetic freezeout temperature in central collisions at
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FIG. 12: Isentropic trajectories and entropy density contour
lines in the case without the CEP. The parameters are the
same as in Fig. 5. The solid lines are isentropic trajectories
(nB/s = 0.01, 0.02, 0.03, 0.04, and 0.05 from left to right) as
in Fig. 5. The dashed lines are the entropy density contour
lines. The contour lines are shown at every 0.1 (1) fm−3 in the
hadron (QGP) phases because the increase rate of the entropy
density in the QGP phase is much larger than that in the
hadron phase due to the strong first order phase transition.

RHIC is noticeably higher than that at SPS, while the ki-
netic freezeout temperature at RHIC is actually slightly
lower than that at SPS [35]45. This can be naturally
understood if the separation of the entropy density (∼
particle density) or energy density contour lines is larger
at kinetic freezeout at RHIC than at SPS. This implies
that the CEP exists in the QCD phase diagram and, fur-
thermore, that the RHIC isentropic trajectory passes on
the left hand side of the CEP. To confirm this tendency,
it is necessary to obtain the kinetic freezeout tempera-
tures at several collision energies between the SPS and
current RHIC energies.

V. SUMMARY

In this paper, we discussed the hydrodynamical expan-
sion near the QCD critical end point and its consequences
in experimental observables. First we constructed realis-
tic equations of state with the CEP on the basis of the
universality hypothesis and discussed the hydrodynami-
cal expansion near the CEP. The behavior of isentropic
trajectories near the QCD critical end point is clearly dif-
ferent from that in the bag plus excluded volume model,

4 The kinetic freezeout we are considering here is that of pions and
kaons. The analysis in Ref. [35] does not take into account the
effect of resonance decays. When resonance decays are taken into
account, the kinetic freezeout temperature becomes even lower
[38].

5 More precisely speaking, kinetic freezeout takes place when the
mean collision rate and the product of the expansion rate and
the typical scale of the system become comparable. However,
according to the results of the HBT interferometry, the typical
size at RHIC is not increased as the expansion rate compared to
SPS.

which is usually used in hydrodynamical models. We
found that the CEP acts as an attractor of isentropic
trajectories, nB/s = const., in the T -µB plane, not only
on the right hand side of the CEP but also on the left
hand side of the CEP. Because of the focusing of the isen-
tropic trajectories, the path of the system in the course
of the time evolution in the T -µB plane is remarkably dif-
ferent from that in the usual bag plus excluded volume
model. This will be reflected in the final state observ-
ables that are sensitive to the equation of state, such as
the anisotropic flows (directed, elliptic, and higher order
Fourier coefficients) [39, 40] and HBT radii. For this pur-
pose, full 3-D hydrodynamical calculations [41, 42] with
realistic equations of state are indispensable [43].

Next we argued the critical slowing down near the
QCD critical end point. We compared the equilibrium
and non-equilibrium correlation lengths along two isen-
tropic trajectories which pass near the CEP. We found
that the difference between them at kinetic freezeout is
very small.

Furthermore, we considered the experimental observ-
ability of the consequences of the CEP. Fluctuations and
viscosities diverge at the CEP, but fluctuation which is
induced by the CEP will fade by kinetic freezeout for the
same reason as for the correlation length. This explains
the non-observation of sharp non-monotonic behaviors in
fluctuations. However, the singular part of the fluctua-
tions is approximately proportional to the cube of the
correlation length and there is a possibility that more
precise measurements in the future may reveal the ex-
istence of the CEP. The singularity in the viscosity is
too weak to affect observables. Concerning the chemical
freezeout process, we need to consider the effect of the
interactions on hadrons for detailed discussion on parti-
cle number ratios, when it takes place near the CEP. We
found that, at least now, the most promising way is to
trace the behavior of the collision energy dependence of
the kinetic freezeout temperature. The fact that the ki-
netic freezeout temperature at RHIC is lower than that
at SPS suggests the existence of the CEP in the T -µB

plane and that the RHIC path goes left of the CEP.

Although our discussion in this paper does not depend
on the parameter choice in Eqs. (12) and (13) qualita-
tively, our assumption that the critical region near the
CEP spreads out a large area may look too optimistic.
However, according to recent lattice calculations at zero
baryon chemical potential, the ψ̄ψ susceptibility shows a
very broad peak as a function of the temperature. Fur-
thermore, the width tends to even increase as the lattice
spacing is decreased [44]. This clearly indicates that the
free-gas description cannot be used at 100 . T . 250
MeV at zero baryon chemical potential.
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APPENDIX A: STABILITY CONDITION

In an isolated system, the entropy S takes the max-
imum value in the stable equilibrium state and the fol-
lowing relations [24, 25],

δS = 0, (A1)

δ2S < 0, (A2)

are satisfied. Here the independent variables are the en-
ergy E, volume V , and particle number N . Suppose

that the total system whose volume is V is composed of
two parts with the volumes V1 and V2. Suppose that in
V1 (V2) the variation of the energy, volume, and parti-
cle number are δE1 (δE2), δV1 (δV2), and δN1 (δN2),
respectively. These variations satisfy

δE1 + δE2 = 0,

δV1 + δV2 = 0,

δN1 + δN2 = 0. (A3)

By expanding δS with regard to E, V , and N in Eq.
(A2) and substituting

(

∂S
∂E

)

V,N
= 1

T ,
(

∂S
∂V

)

E,N
= P

T ,
(

∂S
∂N

)

E,V
= − µ

T , and Eq. (A3) into Eq. (A2), we ob-

tain T1 = T2, P1 = P2, and µ1 = µ2, i.e., both parts
of the system have the same temperature, pressure, and
chemical potential in equilibrium.

Next we evaluate the second variation δ2S in Eq. (A2),

δ2S =

(

∂2S1

∂E2
1

)

V1,N1

δ2E1 +

(

∂2S1

∂V 2
1

)

E1,N1

δ2V1 +

(

∂2S1

∂N2
1

)

E1,V1

δ2N1

+2

(

δ2S1

δE1δV1

)

N1

δE1 · δV1 + 2

(

δ2S1

δV1δN1

)

E1

δN1 · δV1 + 2

(

δ2S1

δE1δN1

)

V1

δE1 · δN1

+(1 → 2). (A4)

By calculating δ2S using TδS = δE + PδV − µδN and
comparing it with (A4), we obtain

Tδ2S = −δT1δS1 + δP1δV1− δµ1δN1 +(1 → 2). (A5)

By definition,

δS1 =

(

∂S1

∂T1

)

V1,N1

δT1 +

(

∂S1

∂V1

)

T1,N1

δV1 +

(

∂S1

∂N1

)

T1,V1

δN1,

δP1 =

(

∂P1

∂T1

)

V1,N1

δT1 +

(

∂P1

∂V1

)

T1,N1

δV1 +

(

∂P1

∂N1

)

T1,V1

δN1,

δµ1 =

(

∂µ1

∂T1

)

V1,N1

δT1 +

(

∂µ1

∂V1

)

T1,N1

δV1 +

(

∂µ1

∂N1

)

T1,V1

δN1. (A6)

Substituting Eq. (A6) and the following relations,
(

∂S
∂T

)

V,N
= 1

T Cv,
(

∂S
∂V

)

T,N
=

(

∂P
∂T

)

V,N
,

(

∂µ
∂V

)

T,N
=

−
(

∂P
∂N

)

T,V
, and

(

∂µ
∂T

)

V,N
= −

(

∂S
∂N

)

T,V
into Eq. (A5),

and using Eq. (A3), we obtain the quadratic form
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Tδ2S = −
1

T
Cv(δT )2 +

(

∂P

∂V

)

T,N

[

δV +

(

∂P
∂N

)

T,V
(

∂P
∂V

)

T,N

δN

]2

−





(

∂µ

∂N

)

T,V

+

(

∂P
∂N

)2

T,V
(

∂P
∂V

)

T,N



 (δN)2, (A7)

where we have suppressed the suffixes on the right hand
side. Finally from Eqs. (A2) and (A7), we obtain the
stability conditions,

Cv > 0, (A8)
(

∂P

∂V

)

T,N

< 0, (A9)

(

∂µ

∂N

)

T,V

> −

(

∂P
∂N

)2

T,V
(

∂P
∂V

)

T,N

> 0. (A10)

We note that (A10) is equivalent to the following inequal-
ity [24],

(

∂µ

∂N

)

P,T

> 0. (A11)
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